
N N

N

N N

NH

Me

N

N

H
Me

H

Me

n-Bu

n-Bu
n-Bu

Fe Fe
A-

PF6

1 2

3PF6

TETRAHEDRON
LETTERS

Tetrahedron Letters 42 (2001) 5777–5779Pergamon

A homochiral tripodal receptor with selectivity for sodium
(R)-2-aminopropionate over sodium (S)-2-aminopropionate
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Abstract—This paper describes the synthesis and use of a homochiral tripodal imidazolium salt that can distinguish between
sodium (R)-2-aminopropionate and sodium (S)-2-aminopropionate. The imidazolium salt complexes with the (R) enantiomer but
not with the (S) enantiomer. © 2001 Elsevier Science Ltd. All rights reserved.

In spite of their very important roles in chemistry and
biology, substrates or cofactors for enzymes,1 nucle-
ophiles, bases, redox agents and phase transfer cata-
lysts, the synthesis of receptors designed to recognise
and coordinate anions has only relatively recently
become an area of intense research activity. The combi-
nation of a metal unit as a Lewis acid together with an
amide N�H group as a hydrogen bond donor have been
demonstrated to be the essential components for anion
recognition. As such this combination has been widely
applied to the design of anion receptors.2 Recently the
ability of 1,3-disubstituted imidazolium cations to enter
into hydrogen bonds with halide ions3–7 has led to the
design of new systems based on the azolium entity that
have anion recognition properties, such as molecules 1
and 2.8–10

We were intrigued by the tripodal anion receptor 1 used

by Sato8 and the possibility that it could be modified to
incorporate chirality. A homochiral tripodal anion
receptor may have the potential ability to distinguish
between chiral anions and therefore hold promise in
biomedical applications.

Therefore, we synthesised four novel homochiral
molecules 3–6 according to a similar procedure used by
Sato and Dias,11 but incorporating chirality into the
compounds. The general synthesis of compounds 3–6 is
given in Scheme 1. The N-((−)-cis-myrtanyl) imidazole
(7), for example, was formed using a modified
Arduengo12 protocol whereby an amine can react with
aqueous formaldehyde, glyoxal and aqueous ammonia
to effect a ring closure and produce a N-substituted
imidazole. This was subsequently reacted with 1,3,5-
tris(bromomethyl)-2,4,6-trimethyl benzene 813 to form
the 1,3,5-tris[N-((−)-cis-myrtanyl imidazolium)methyl]-
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2,4,6-trimethyl benzene trisbromide salt (9).9 Finally
this was converted to the corresponding trishex-
afluorophosphate salt 3.

In series of 1H HMR experiments14 sodium (R)-2-
aminopropionate, sodium (S)-2-aminopropionate or a
racemic mixture were added separately to each of the
four tripodal molecules 3–6 in an 1:1 ratio [1:1:1 for the
racemic system (tripodal compound:(R)-anion:(S)-
anion)]. The rational behind these experiments was that
if the tripodal molecules act as receptors for the anion
enantiomers, a diastereomeric complex would be
formed. The formation of a diastereomeric complex
would possibly lead to differences in the 1H NMR
spectra for either the anion enantiomer or that of the
tripodal molecule component of the complex, and those
of the uncomplexed components. Should the potential
receptor distinguish between anion enantiomers we
might see a shift difference in the � value for a particu-
lar proton in the complex, and the magnitude of the
shift could depend on which one of the two possible
diastereomic complexes is formed. If this were the case,
we can establish which complex is formed
preferentially.

The results from these experiments were very interest-
ing. For tripodal compounds 4–6, we observed no
difference in the 1H NMR spectra when mixed with
either of the anion enantiomers or the racemic mixture.
However, when compound 3 was mixed with the anions
there was a distinct down-field shift of the � value of
the � proton for the sodium (R)-2-aminopropionate
anion to 4.42 ppm and broadening of the signal was
observed, indicating the formation of a diastereomeric
complex. In the absence of 3 this proton has a � value
of 3.62 ppm and is a distinct quartet. In the corre-
sponding experiment with the sodium (S)-2-aminopro-
pionate there was no shift in the � value for the
corresponding proton and the signal remained as a
quartet. When the experiment was carried out with the
1:1:1 (compound 3:(R)-anion:(S)-anion) system both
the shifted signal at 4.42 ppm and the unshifted signal
at 3.62 ppm were observed in an 1:1 ratio, indicating
that all the (R)-anion enantiomer has been complexed
over the (S)-anion enantiomer. Although these are
preliminary observations, they suggest that the tripodal
homochiral imidazolium salt 3 can distinguish between
sodium (R)-2-aminopropionate and sodium (S)-2-
aminopropionate.

Scheme 1.
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